能量密度(Energydensity)是指在單位一定的空間或質量物質中儲存能量的大小。鋰離子電池的能量密度也就是電池平均單位體積或質量所釋放出的電能。電池的能量密度一般分重量能量密度和體積能量密度兩個維度。
一、變大電池尺寸
電池廠家可以通過變大原來電池尺寸來達到電量擴容的效果。我們熟悉的例子莫過于:率先使用松下18650電池的知名電動車企特斯拉將換裝新款21700電池。
但是電芯“變胖”或者“長個”只是治標,并不治本。釜底抽薪的辦法,是從構成電池單元的正負極材料以及電解液成分中,找到提高能量密度的關鍵技術。
二、化學體系變革
前面提到,鋰離子電池的能量密度受制于由電池的正負極。由于目前負極材料的能量密度遠大于正極,所以提高能量密度就要不斷升級正極材料。
1.高鎳正極
三元材料通指鎳鈷錳酸鋰氧化物大家族,我們可以通過改變鎳、鈷、錳這三種元素的比例來改變鋰離子電池的性能。
2.在圖硅碳負極
硅基負極材料的比容量可以達到4200mAh/g,遠高于石墨負極理論比容量的372mAh/g,因此成為石墨負極的有力替代者。
目前,用硅碳復合材料來提升鋰離子電池能量密度的方式,已是業(yè)界公認的鋰離子電池負極材料發(fā)展方向之一。特斯拉發(fā)布的Model3就采用了硅碳負極。
在未來,如果想要百尺竿頭更進一步——突破單體電芯350Wh/kg的關口,業(yè)內同行們可能需要著眼于鋰金屬負極型的電池體系,不過這也意味著整個鋰離子電池制作工藝的更迭與精進。中幾種典型三元材料中可以看出,鎳的占比越來越高,鈷的占比越來越低。鎳的含量越高,意味著電芯的比容量就越高。另外,由于鈷資源缺少,提高鎳的比例,將降低的降低鈷的使用量。
三、系統(tǒng)能量密度:提升鋰離子電池包的成組效率
電池包的成組考驗的是電池“攻城獅“們對單體電芯和模組排兵布陣的能力,需要以安全性為前提,大程度地利用每一寸空間。
鋰離子電池包的“瘦身”主要有以下幾種方式。
1.優(yōu)化排布結構
從外形尺寸方面,可以優(yōu)化系統(tǒng)內部的布置,讓電池包內部零部件排布更加緊湊有效。
2.拓撲優(yōu)化
我們通過仿真計算在確保剛強度及結構可靠性的前提下,實現(xiàn)減重設計。通過該技術,可以實現(xiàn)拓撲優(yōu)化和形貌優(yōu)化終幫助實現(xiàn)鋰離子電池箱體輕量化。
3.選材
我們可以選擇密度低的材料,如鋰離子電池包上蓋已經(jīng)從傳統(tǒng)的鈑金上蓋逐步轉變?yōu)閺秃喜牧仙仙w,可以減重約35%。針對電池包下箱體,已經(jīng)從傳統(tǒng)的鈑金方案逐步轉變?yōu)殇X型材的方案,減重量約40%,輕量化效果明顯。
4.整車一體化設計
整車一體化設計與整車結構設計通盤考慮,盡可能共享、共用結構件,例如防碰撞設計,實現(xiàn)極致的輕量化
鋰離子電池是一個很全方面的產(chǎn)品,你要提升某一方面的性能,可能會犧牲其他方面的性能,這是電池設計研發(fā)的理解基礎。動力電池屬于車載專用,因而能量密度不是衡量電池品質的標準。